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Abstract: A composite dynamic system (CDS) is composed of multiple components. Each component
failure can equally induce higher loading on the surviving components and, hence, enhances the
hazard rate of each surviving component. The applications of CDS and the reliability evaluation of
CDS has earned more attention in the recent two decades. Because the lifetime quality of components
could be inconsistent, the lifetimes of components in the CDS is considered to follow heterogeneous
baseline Gompertz distributions in this study. A power-trend hazard rate function is used in order
to characterize the hazard rate of the CDS. In order to overcome the difficulty of obtaining reliable
estimates of the parameters in the CDS model, the Bayesian estimation method utilizing a hybrid
Gibbs sampling and Metropolis-Hasting algorithm to implement the Markov chain Monte Carlo
approach is proposed for obtaining the Bayes estimators of the CDS parameters. An intensive
simulation study is carried out to evaluate the performance of the proposed estimation method.
The simulation results show that the proposed estimation method is reliable in providing reliability
evaluation information for the CDS. An example regarding the service system of small electric carts
is used for illustration.

Keywords: composite dynamic system; hazard rate; heterogeneity; Markov chain Monte Carlo;
sequential order statistics

1. Introduction
1.1. Literature Review

The composite dynamic system (CDS) is composed of n(≥ 1) identical components.
The components fail one-by-one over time until r failures are observed (r ≤ n), and then
the CDS is defined as malfunctioned. Each component failure in the CDS is assumed to
equally distribute higher loading on the surviving components and enhance the hazard
rate of the surviving components. Today, the CDS is one widely used electronic device and
it is also named r-out-of-n failure system. The CDS reduces to a series system as r = 1 and
reduces to a parallel system as r = n. The corresponding ordered failure times from the
r failed components are also named sequential order statistics (SOSs) from the r-out-of-n
failure system.

In the past two decades, researchers have paid attention on studying the reliability of a
CDS. Kamps [1] proposed the concept of generalized order statistics as a unified approach
for different models of ordered random variables. Cramer and Kamps [2] studied the
reliability of (n− r + 1)-out-of-n failure system for the exponential distribution. Cramer
and Kamps [3] investigated the maximum likelihood estimation method, uniformly mini-
mal variance unbiased estimation method, and best linear unbiased estimation method
based on SOS samples. Moreover, they used these three estimation methods in order to
obtain the estimates of parameters in the exponential distribution. With no any restrictions
being imposed on the model parameters, Cramer and Kamps [4] derived the marginal
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distribution function of SOS and generalized order statistics. Their findings are related to
the revelation transform for the Meijer’s G-functions and Beta distribution. Revathy and
Chandrasekar [5] obtained the minimum risk equivalent estimates of parameters for the ex-
ponential and Gamma distributions, the location, scale, and location-scale families. Zhuang
and Hu [6] studied stochastic properties on the SOS and conducted multivariate stochas-
tic comparisons that are based on SOS samples. Balakrishnan, Beutner, and Kamps [7]
proposed an order restricted inference procedure for sequential k-out-of-n systems.

Burkschat [8] used a general model in order to extend the SOS for two directions
and his ideas can extend the SOS concept to exchangeable random variables. Moreover,
the independent and identically distributed assumption in the study of Burkschat [8]
becomes weakened. Burkschat’s idea can also be transferred to general coherent systems,
for example, the dependent and not identically distributed component coherent systems.
Beutner and Kamps [9] obtained the estimates of scale parameters for different CDSs that
are based on SOS samples. In their study, the lifetimes of components follow a general
location-scale family. Deshpande, Dewan, and Naik-Nimbalkar [10] constructed a general
semi-parametric multivariate family of distributions.Their family can explicitly character-
ize CDSs through using proportional conditional hazards. Moreover, they suggested a
nonparametric test in order to test either a failure happening earlier than warranted or
happening independently. Beutner [11] analyzed the test statistics that are based on the
profile score process as well as the test statistics on using a multivariate intensity ratio
and derived their asymptotic distribution. Bedbur [11] also uniformly studied the most
powerful unbiased tests with the conditionally proportional hazard rate assumption for a
variety of hypotheses based on the SOS samples from a regular exponential family.

Schenk, Burkschat, Cramer, and Kamps [12] used multiple type II censoring SOS
sample in order to obtain the Bayes estimator of parameter of the exponential distribution
via using the inverse Gamma distribution as a prior distribution. Denote the terms of
Bayes estimator/estimate by BE here and after. Navarro and Burkschat [13] proposed a
new lifetime representation for coherent systems with a specific dependence-type among
the component lifetimes that are based on SOS samples. Balakrishnan, Beutner, and
Kamps [14] studied the impact of using different link functions to model parameters in
obtaining maximum likelihood estimates that are based on SOS samples. Denote the
terms of maximum likelihood estimator/estimate by MLE here and after. Balakrishnan,
Kamps, and Kateri [15] studied the maximum likelihood estimation method based on SOS
samples that were obtained from a step-stress test. Burkschat and Navarro [16] studied the
mixture representations of the residual lifetime and the inactivity time of systems. In their
study, the system contains failure-dependent components. Moreover, they examined the
property of weights in mixture representations. Burkschat and Torrado [17] examined the
reversed hazard rate property of SOS. They also investigated the conditions of reversed
hazard rate ordering and the decreasing reversed hazard rate of SOS. Park [18] used an
expectation-maximization (EM) algorithm in order to obtain the MLE of the reliability
function of equally load-sharing systems. Burkschat, Cramer, and Górny [19] studied the
parameter inference for type I censoring sequential CDSs.

Sutar and Naik-Nimbalkar [20] modeled the load-sharing phenomenon in a CDS
under the accelerated failure time model. Moreover, they proposed a testing method in
order to test the dependence of the component failure times. Esmailian and Doostparast [21]
studied the properties of progressive SOS samples and the maximum likelihood estimation
method for the Weibull distribution with a conditionally proportional hazard rate. Shafay,
Balakrishnan, and Sultan [22] investigated the prediction for future SOS through using
Bayesian approaches for one- and two-parameter exponential distributions. Hashempour
and Doostparast [23] studied inference methods in order to construct equal-tailed and
approximate confidence intervals (CIs) with Fisher information that is based on observed
multiply system lifetimes. Bedbur, Kamps, and Kateri [15] proposed a multi-sample model
for general step-stress exponents on the basis of SOS samples. Their method is quite
generalized and it can be applied for any chosen arbitrary absolutely continuous lifetime



Mathematics 2021, 9, 145 3 of 21

distribution. Balakrishnan, Jiang, Tsai, Lio, and Chen [24] proposed inferential methods
for the CDSs, in which components in a CDS follow a baseline Burr type XII distribution
with a power-trend hazard rate function. Hashempour and Doostparast [23] evaluated
the reliability of comparing heterogeneous exponential distributions that are based on
independent multiply SOS samples with using the conditionally proportional hazard
rate assumption. Bedbur, Burkschat, and Kamps [25] released the common proportional
assumption and allowed for the hazard rates of the baseline lifetime distributions in
situations; the failures can have an impact on the entire shape of the hazard rate of surviving
components. Hashempour and Doostparast [26] studied Bayesian inference methods on
multiple SOS samples for heterogeneous exponential distributions. They also studied using
the generalized likelihood ratio test in order to test the homogeneity property. Baratnia
and Doostparast [27] proposed an extension of SOS to model the system lifetimes with
independent, but heterogeneous, components for the distribution family that was studied
by Burkschat and Navarro [16].

1.2. Motivation and Organization

Numerous reliability inference studies regarding CDS have been investigated in
literature that is based on SOS samples. Among them, the parametric hazard rate model
that was proposed by Balakrishnan, Jiang, Tsai, Lio, and Chen [24] is flexible and simple for
obtaining the CI of the baseline survival function of CDS components. Balakrishnan, Jiang,
Tsai, Lio, and Chen [24] have presented the analytical statistical properties for the maximum
likelihood estimation method. However, two problems are found when implementing
the maximum likelihood estimation method that was proposed by Balakrishnan, Jiang,
Tsai, Lio, and Chen [24]. First, the MLEs of the model parameters could be difficult to
obtain if the sample size is small. Second, the lifetime components in many instances could
be manufactured with heterogeneity conditions due to ill-trained operators, while using
heterogeneous materials in production or other reasons.

Assume that the target baseline lifetime distribution of the components in a CDS is
Gompertz with λ = 2 (scale parameter ) and γ = 3 (shape parameter), and the producer
of CDS buys components from one specific supplier, say Supplier A. If the quality of
components from Supplier A is consistent, the histogram of the homogeneous data set
can be displayed in Figure 1. It is often that the quality of components from the supplier
is inconsistent. In order to catch the impact of the inconsistent quality of components on
the CDS, we generated 1000 Gompertz observations with scale parameter λ and shape
parameter γ, but both of the parameters are random. λ follows the Gamma distribution
with shape parameter 2 and scale parameter 1 and γ follows the Gamma distribution with
shape parameter 3 and scale parameter 1; that is, the mean value of the Gamma distribution
is 2 for λ and 3 for γ. These two mean values are the true parameters in the homogeneous
case. Figure 1 shows two more histograms that are based on two heterogeneous data
sets that are generated from the aforementioned heterogeneous case. That means that
the quantile of the heterogeneous case could be different from the quantile that is based
on the homogeneous case. Subsequently, we could obtain different reliability assessment
results if we ignore the heterogeneity condition and undertake reliability inference that is
based on the homogeneity assumption. It is an important issue to study the impact of the
heterogeneity condition on the reliability of a CDS based on SOS samples.

To our best knowledge, the inference for the CDS parameter when the components
follow heterogeneous Gompertz distributions is still an open question. It is difficult to
evaluate the CDS’s reliability under a heterogeneity condition. One method is to assume
the CDS’s lifetime can be characterized by a mixture model. However, two difficulties are
found when using a mixture model for the CDS’s lifetime. The first difficulty is that the
number of candidate distributions for mixture is unknown. The second is that the quality
of parameter estimation becomes very difficult to control. In this study, we consider that
the model parameters are random and they follow a joint prior distribution to handle the
heterogeneity condition. Subsequently, a Bayesian estimation procedure using a hybrid
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Gibbs sampling and Metropolis-Hasting (hGSMH) algorithm is proposed in order to
overcome the computation intractability to implement the Markov chain Monte Carlo
(MCMC) approach for obtaining the BEs of the CDS parameters. Denote the proposed
estimation procedure by the hGSMH-MCMC method here and after.

Figure 1. The histograms based on a homogeneous-Gompertz data set and two heterogeneous-
Gompertz data sets.

The rest of this study is organized, as follows: the statistical model of heterogeneous
baseline Gompertz distributions with SOS samples is investigated in Section 2. The power-
trend hazard rate function is considered for the CDS to obtain the likelihood function.
Moreover, the posterior distribution of the statistical model that is based on the SOS sample
from the heterogeneous baseline Gompertz distributions is analytically obtained. The
proposed hGSMH-MCMC method is also proposed to obtain the BEs of parameters in
the CDS. An intensive simulation study is conducted in Section 3 in order to evaluate the
quality of the proposed hGSMH-MCMC method in terms of the measures of bias and mean
square error (MSE) of estimates. Moreover, an example regarding the service system of
small electric carts is used for illustrating the applications of the proposed method. The
simulation results show that the proposed estimation method is reliable for obtaining the
BEs of parameters in the CDS. Section 4 provides some concluding remarks.

2. The Statistical Model

Let the lifetimes of components in a CDS follow a baseline Gompertz distribution,
whose probability density function (PDF), cumulative density function (CDF), and hazard
rate function are defined, respectively, by

f0(x) ≡ f0(x | λ, γ) = λeγx− λ
γ (e

γx−1), x > 0, (1)

F0(x) ≡ F0(x | λ, γ) = 1− e−
λ
γ (e

γx−1), x > 0, (2)

and
h0(x) ≡ h0(x | λ, γ) = λeγx, x > 0, (3)
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where λ > 0 is the scale parameter and γ > 0 is the shape parameter of the baseline
distribution. The Gompertz distribution can reduce to an exponential distribution as γ→ 0.
Many authors, including Read [28], Makany [29], Rao and Damaraju [30], Franses [31], and
Wu and Lee [32], have studied the statistical methodologies and characterizations of the
Gompertz distribution since it was introduced by Gompertz [33] to characterize the human
mortality and establish actuarial tables. Garg, Rao and Redmond [34] investigated the
properties of this distribution. Moreover, he proposed the maximum likelihood estimation
method to estimate the distribution parameters of Gompertz. Gordon [35] established the
maximum likelihood procedure for the mixture of two Gompertz distributions. Chen [36]
proposed an exact confidence interval for γ and an exact joint confidence region for
both parameters by using the properties of the conventional exponential distribution.
Wu et al. [37] proposed un-weighted and weighted least-square estimates for λ and γ
based on first failure-censored samples. Willekens [38] presented the connections among
the Gompertz, Weibull, and other type I extreme value distributions.

Assume that, when the jth component fails, surviving components in the CDS can
equally share the loading. It can be shown that the lifetimes of surviving components still
follow a Gompertz distribution, but they have different hazard rates. Following the equal-
sharing condition for the surviving components in the CDS, the hazard rate of surviving
components is increased. The PDF, CDF, and hazard rate function can be defined by the
f j+1(x), Fj+1(x) and hj(x) = f j+1(x)/(1− Fj+1(x)), respectively, for j = 0, 1, 2, . . . , r. It is
trivial to show that hj(x) ≥ hj−1(x) for j = 1, 2, . . . , r and

hj(x) = αj+1h0(x), j = 0, 1, 2, . . . , r. (4)

The proportional hazard model assumption that is given in Equation (4) is equiv-
alent to let Fj(x) = 1 − [1 − F0(x)]αj for j = 1, 2, . . . , r. For simplifying the notations,
let yj = x(j), j = 1, 2, . . . , r, y = (y1, y2, . . . , yr) denote the realizations of the SOS and
Θ = (λ, γ, α1, . . . , αr). Following the inference procedure of Beutner [11], the likelihood
function that is based on the sample y can be presented by

L(Θ|y) = an,r

(
r

∏
j=1

αj

)(
r−1

∏
j=1

[(1− F0(yj))
mj f0(yj)]

)
× (1− F0(yr))

αr(n−r+1)−1× f0(yr), (5)

where an,r = n!/(n− r)! and mj = (n− j + 1)αj − (n− j)αj+1 − 1 for j = 1, 2, . . . , r − 1.
Based on Equations (1), (2), and (5), Balakrishnan, Jiang, Tsai, Lio, and Chen [24] presented
the log-likelihood function by

L(Θ|y) = an,r

(
r

∏
j=1

αj

)
λr × eγ ∑r

j=1 yj × e−
λ
γ ∑r−1

j=1 (mj+1)(eγyj−1)

× e−
λ
γ αr(n−r+1)(eγyr−1). (6)

Use the power-trend hazard rate model of αj = θ j, j = 1, 2, . . . , r in Equation (6).
Subsequently, Θ can be reduced to Θ = (λ, γ, θ), Equation (6) can be represented as
Equation (7) and the log-likelihood function of can be presented as Equation (8):

L(Θ|y) = an,r × θ
r(r+1)

2 × λr × eγ ∑r
j=1 yj ×ω1,y(Θ)×ω2,y(Θ) (7)

and

`(Θ) = log(L(Θ|y)) ∝
r(r + 1)

2
log(θ) + r log(λ) + γ

r

∑
j=1

yj + log(ω1,y(Θ)) + log(ω2,y(Θ)), (8)
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where ω1,y(Θ) = e−
λ
γ ∑r−1

j=1 (mj+1)(eγyj−1) and ω2,y(Θ) = e−
λ
γ θr(n−r+1)(eγyr−1). The MLEs of

γ and θ that are based on SOS samples do not have explicit form and only the MLE of λ,
given γ and θ, can be obtained with an explicit form as the following:

λ̂ =
rγ

∑r−1
j=1(n− j)θ j+1(eγyj+1 − eγyj)

(9)

It could be difficult to set up the heterogeneity condition in the CSD model to conduct
the maximum likelihood estimation procedure. One feasible method is to characterize the
heterogeneity among components in the CDS by assuming that the models parameters
are random, and then to obtain the BEs of the model parameters for reliability evaluation.
Denote the BEs of λ, γ and θ by λ̂B, γ̂B, and θ̂B, respectively. Let the prior distribution of Θ
be defined by

π(γ, θ) = φ1(θ)φ2(λ|η1, δ1)φ3(γ|η2, δ2), (10)

where
φ1(θ) =

1
b2 − b1

, 0 < b1 < θ < b2, (11)

φ2(λ|η1, δ1) =
ηδ1

1
Γ(δ1)

λδ1−1e−η1λ, λ > 0, (12)

and

φ3(γ|η2, δ2) =
ηδ2

2
Γ(δ2)

γδ2−1e−η2γ, γ > 0, (13)

where η1, η2, δ1, and δ2 are hyper-parameters. The Gamma distribution has been widely
used as the prior distributions of the parameters of the Gompertz distribution, see, for
example, Soliman et al. [39], Dey et al. [40], and Chacko and Mohan [41]. Some of the
authors considered using non-informative prior distribution as the prior distributions of the
parameters of the Gompertz distribution in order to implement Bayesian estimation, see, for
example, Ismail [42] and Feroze and Aslam [43]. When the Gamma prior distribution has a
large variance, the Gamma prior distribution approaches a non-informative distribution.
In this study, we consider using Gamma distribution as the prior distributions of the scale
and shape parameters of the Gompertz distribution, respectively. Moreover, a MCMC
approach is proposed in order to overcome the computation complexity that is caused by
using the Gamma prior distribution.

Using the derivation in Appendix A, the posterior distribution of Θ, given the sample
y, can be obtained by

π(Θ|y) = 1
c
× g1(λ|η1, δ1)× g2,y(γ|η2, δ2)× θ

r(r+1)
2 ×ω1,y(Θ)×ω2,y(Θ), (14)

where

g1(λ|η1, δ1) =
ηr+δ1

1
Γ(r + δ1)

λr+δ1−1e−η1λ, (15)

g2,y(γ|η2, δ2) =
ηδ2

2,y

Γ(δ2)
γδ2−1e−η2,yγ, (16)

η2,y = η2 −∑r
j=1 yj and

c =
∫ ∞

0

∫ ∞

0

∫ b2

b1

g1(λ|η1, δ1)× g2,y(γ|η2, δ2)(θ
r(r+1)

2 )ω1,y(Θ)×ω2,y(Θ)dθdγdλ. (17)

After algebraic computation, we can obtain the conditional posterior distributions of
θ, λ and γ by

π1,y(θ|λ, γ) ∝ θ
r(r+1)

2 ×ω1,y(Θ)×ω2,y(Θ), (18)
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π2,y(λ|γ, θ) ∝ λr+δ1−1e−η1λ ×ω1,y(Θ)×ω2,y(Θ) (19)

and
π3,y(λ|θ, γ) ∝ γδ2−1e−η2,yγ ×ω1,y(Θ)×ω2,y(Θ) (20)

respectively. It can be found that π1,y(θ|λ, γ), π2,y(λ|γ, θ) and π3,y(λ|θ, γ) are not con-
jugate distributions. Hence, it is difficult to update all of the parameters via using the
marginal posterior distributions of π1,y(θ|λ, γ), π2,y(λ|γ, θ) and π3,y(λ|θ, γ) in order to
implement the Gibbs sampling algorithm.

Assume that λ(i), γ(i) and θ(i) are the values of λ, γ and θ at the previous state,
respectively. Let θ∗ be generated from a proposal, say q1(θ

∗|θ(i)). Given λ(i) and γ(i), it is
trivial to show that the ratio of

κ1 ≡ κ1

(
θ∗, θ(i)|λ(i), γ(i)

)
=

π1,y(θ
∗|λ(i), γ(i))

π1,y(θ(i)|λ(i), γ(i))
× q1(θ

(i)|θ∗)
q1(θ∗|θ(i))

=

(
θ∗

θ(i)

) r(r+1)
2 ω1,y(λ

(i), γ(i), θ∗)×ω2,y(λ
(i), γ(i), θ∗)

ω1,y(λ(i), γ(i), θ(i))×ω2,y(λ(i), γ(i), θ(i))

× q1(θ
(i)|θ∗)

q1(θ∗|θ(i))
(21)

is simple for computation, due to κ1 only depending on the right hand side of
Equation (18). The Metropolis-Hastings algorithm uses the ratio of κ1 in order to up-
date θ. Likewise, assume that λ∗ and γ∗ are generated from the proposals of q2(λ

∗|λ(i))
and q3(γ

∗|γ(i+1)), respectively, and the updated value of θ is θ(i+1). Given γ(i) and θ(i+1),
we can update λ by the ratio of

κ2 ≡ κ2

(
λ∗, λ(i)|γ(i), θ(i+1)

)
=

π2,y

(
λ∗|γ(i), θ(i+1), y

)
π2,y(λ(i)|γ(i), θ(i+1), y)

× q2(λ
(i)|λ∗)

q2(λ∗|λ(i))

=

(
λ∗

λ(i)

)r+δ1−1
× e−η1(λ

∗−λ(i)) ω1,y(λ
∗, γ(i), θ(i+1))×ω2,y(λ

(∗), γ(i), θ(i+1))

ω1,y(λ(i), γ(i), θ(i+1))×ω2,y(λ(i), γ(i), θ(i+1))

× q2(λ
(i)|λ∗)

q2(λ∗|λ(i))
. (22)

Let the updated value of λ be λ(i+1). Given λ(i+1) and θ(i+1), we can update γ by
the ratio of respectively. The steps to generate the Markov chains of θ, λ and γ via using
the proposed hGSMH-MCMC method are presented in Procedure 1. Please note that the
proposed hGSMH-MCMC method is also a Metropolis-Hastings-within Gibbs approach.
The proposed hGSMH-MCMC method combines the merits of the Metropolis-Hastings
and Gibbs algorithms. Hence, the proposed hGSMH-MCMC method is simple to use as
using the typical Metropolis-Hastings algorithm, but it has a higher update rate than the
typical Metropolis-Hastings algorithm.

κ3 ≡ κ3(γ
∗, γ(i)|λ(i+1), θ(i+1)) =

π3,y

(
γ∗|λ(i+1), θ(i+1),

)
π3,y(γ(i)|λ(i+1), θ(i+1),)

× q3(γ
(i)|γ∗)

q3(γ∗|γ(i))

=

(
γ∗

γ(i)

)δ2−1
× e−η2(γ

∗−γ(i))−∑r
j=1 yj(γ

(i)−γ∗)

×
ω1,y(λ

(i+1), γ∗, θ(i+1))×ω2,y(λ
(i+1), γ∗, θ(i+1))

ω1,y(λ(i+1), γ(i), θ(i+1))×ω2,y(λ(i+1), γ(i), θ(i+1))

× q3(γ
(i)|γ∗)

q3(γ∗|γ(i))
, (23)
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Procedure 1: The proposed hGSMH-MCMC method.

Initial Step: let i = 0, and then given the initial estimates are θ(0), γ(0) and λ(0).

Step 1: if i = N go to Step 4; and go to Step 2 otherwise, where N is a big positive number.

Step 2: update θ(i), λ(i) and γ(i) by θ(i+1),λ(i+1) and γ(i+1), respectively, according to Step
2.1 to Step 2.3, as follows:

Step 2.1: generate one θ(∗) ∼ q1

(
θ(∗) | θ(i)

)
and generate u1 ∼ U(0, 1). If u1 ≤

min{1, κ1}, then θ(i+1) = θ(∗), otherwise θ(i+1) = θ(i).
Step 2.2: generate one λ(∗) ∼ q2

(
λ(∗) | λ(i)

)
and generate u2 ∼ U(0, 1). If u2 ≤

min{1, κ2}, then λ(i+1) = λ(∗), otherwise λ(i+1) = λ(i).
Step 2.3: generate one γ(∗) ∼ q3

(
γ(∗) | γ(i)

)
and generate u3 ∼ U(0, 1). If u3 ≤

min{1, κ3}, then γ(i+1) = γ(∗), otherwise γ(i+1) = γ(i).

Step 3: obtain the BEs of θ̂B, λ̂B and γ̂B based on the Markov chains of {θ(i), i = N1 + 1, N1 +

2, . . . , N},
{

λ(i), i = N1 + 1, N1 + 2, . . . , N
}

and {γ(i), i = N1 + 1, N1 + 2, . . . , N},
respectively, where the leading N1 chains are used for burn-in.

Step 4: stop.

Figure 2 provides the flowchart of Algorithm 1. Based on the primacy of mathematical
convenience, we consider the two most commonly used loss functions, the squared loss
and absolute loss functions, to obtain the BEs of the CSD parameters in this study. The BEs
of θ̂B, λ̂B and γ̂B based on the squared loss function can be the sample mean of the Markov
chains of {θ(i), i = N1 + 1, N1 + 2, . . . , N}, {λ(i), i = N1 + 1, N1 + 2, . . . , N} and {γ(i), i =
N1 + 1, N1 + 2, . . . , N}, respectively. The BEs of θ̂B, λ̂B, and γ̂B based on the absolute loss
function can be the sample median of the Markov chains of {θ(i), i = N1 + 1, N1 + 2, . . . , N},
{λ(i), i = N1 + 1, N1 + 2, . . . , N} and {γ(i), i = N1 + 1, N1 + 2, . . . , N}, respectively. The
performance of the proposed hGSMH-MCMC method will be evaluated through using the
Monte Carlo simulations shown in Section 3.

The confidence interval inference of the baseline survival function,

S0(x0) ≡ 1− F0(x0 | λ, γ) = 1− e−
λ
γ (e

γx0−1), x0 > 0, (24)

can provide important information for assessing the reliability of the CDS regarding the
probability of a CDS can survive longer than a specific time of x0. The Markov chain of
S0(x0) based on the Markov chains of λ and γ can be obtain and denoted by {S(i)

0 (x0), i =

N1 + 1, N1 + 2, · · · , N}, where {S(i)
0 (x0) = e

− λ(i)

γ(i)
(eγ(i)x0−1)

for i = N1 + 1, N1 + 2, · · · , N.
The BE of S0(x0) is denoted by ŜB. Subsequently, the empirical distribution of parameter
v can be established based on using {v(i), i = N1 + 1, N1 + 2, · · · , N}. In this study,
v can be λ, γ, θ, or S0(x0). The credible interval, as denoted by (L, U), which admits
an interpretation of (1− 2α)× 100% posterior probability of covering the true v, can be
obtained by the following

Procedure 2: find an (1− 2α)× 100% credible interval of v.

Initial Step: let i = 1. If i < B, then go to Step 1; and go to Step 5 otherwise, where B is a
large positive integer.

Step 1: obtain the Markov chains of
{

v(i), i = N1 + 1, N1 + 2, · · · , N
}

via using the pro-
posed hGSMH-MCMC method in Procedure 1.

Step 2: find the αth and (1-α)th quantiles, v(dL)
and v(dU), from the sorted Markov chains

of
{

v(1), v(2), · · · , v(N−N1)

}
, where v(i) ≤ v(i+1) for i = 1, 2, · · · , (N − N1 − 1),
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dL = bα× (N−N1)c, dU = b(1− α)× (N−N1)c and bxc denotes the largest integer
smaller than or equal x.

Step 3: let (L, U) = (v(dL)
, v(dU)).

Step 4: obtained B credible intervals, (L(j), U(j)), j = 1, 2, · · · , B. The (1− 2α)× 100% cred-
ible interval of parameter v can be obtained by (Lk, Uk) = ( 1

B ∑B
j=1 L(j), 1

B ∑B
j=1 U(j)).

Step 5: stop.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

start 

given initial estimates 

θ(0), 𝜆(0), 𝛾(0) 

generate 

λ(∗)~𝑞2(λ
(∗)|λ(𝑖)), 𝑢2~𝑈(0,1) 

𝑢1 < min⁡{1, 𝜅1} 

𝜃(𝑖+1) = 𝜃(∗) 𝜃(𝑖+1) = 𝜃(𝑖) 

Yes No 

𝜆(𝑖+1) = 𝜆(∗) 𝜆(𝑖+1) = 𝜆(𝑖) 

𝑢2 < min⁡{1, 𝜅2} 

Yes No 

𝛾(𝑖+1) = 𝛾(∗) 𝛾(𝑖+1) = 𝛾(𝑖) 

generate 

𝛾(∗)~𝑞3(𝛾
(∗)|𝛾(𝑖)), 𝑢3~𝑈(0,1) 

𝑢3 < min⁡{1, 𝜅3} 

Yes No 

𝑖 = 𝑁 

No 

Yes 

Obtain the BEs 𝜃𝐵, λ̂𝐵 and 𝛾𝐵 from  

{𝜃(𝑖), 𝑖 = 𝑁1 + 1,𝑁1 + 2,… ,𝑁}, 

{𝜆(𝑖), 𝑖 = 𝑁1 + 1,𝑁1 + 2,… ,𝑁}, 

{𝛾(𝑖), 𝑖 = 𝑁1 + 1,𝑁1 + 2,… ,𝑁}. 

end 

generate 

θ(∗)~𝑞1(θ
(∗)|θ(𝑖)), 𝑢1~𝑈(0,1) 

Figure 2. The flowchart of Procedure 1.
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The obtained credible interval can provide information to make statistical inferences
for v. Figure 3 shows the flowchart of Procedure 2.

start

obtain the sorted Markov chains,

{ϖ(1), ϖ(2), …, ϖ(N ‒ N  )}.

find the αth and (1-α)th

quantiles, ϖ(d   ) and ϖ(d   ), from 

{ϖ(1), ϖ(2), …, ϖ(N ‒ N  )}.
L U

let (L, U) = (ϖ(d   ), ϖ(d   )).L U

obtain B credible intervals, 

(L(j), U(j)), j=1,2, …, B. the

(1-2α)×100% credible interval of 

parameter ϖ:

 𝐿𝜅 ,𝑈𝜅 =  
1

𝐵
 𝐿(𝑗 )

𝐵

𝑗=1
,
1

𝐵
 𝑈(𝑗 )

𝐵

𝑗=1
  

i = B

1

1

end

Yes

No

.

Figure 3. The flowchart of Procedure 2.

3. Markov Carlo Simulations and Example
3.1. Markov Carlo Simulations

An intensive Monte Carlo simulation study is conducted in order to evaluate the
performance of the proposed hGSMH-MCMC method. Size n random samples of lifetimes
are generated from the baseline Gompertz distribution with parameters λ = 2 and γ = 3.
The censoring rate is r = c× n, where c = 0.3, 0.5, 0.6 and 0.7. In this study, we consider
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n = 30, 50 and 100 for simulations. Traditionally, it is difficult to obtain the MLEs of the
CDS parameters for the homogeneous cases when the sample size is small. However, it
could be difficult to collect a large sample in order to evaluate the quality or reliability of
the CDS in practical applications.

In order to overcome this difficulty, we can consider using Gamma prior distributions
with a big variance to implement the proposed hGSMH-MCMC method. Subsequently, the
obtained BEs can be closed to the MLEs of the CDS parameters due the prior distributions
in the proposed Bayesian estimation method being close to non-informative prior distribu-
tions. The aforementioned consideration and the proposed hGSMH-MCMC method can
be used to obtain the BEs of the CDS parameters under the heterogeneity condition. We
consider the following five scenarios of prior parameter combinations shown in Table 1.

Table 1. The hyper-parameters of the prior distributions for Monte Carlo simulations.

Scenario δ1 η1 Var(δ) δ2 η2 Var(γ)

S1 4 2 1 6 2 1.5
S2 2 1 2 3 1 3
S3 0.7 0.05 280 0.7 0.05 280

Scenarios S1 and S2 indicate that the Gamma prior distributions have a mean to match
the values of λ = 2 and γ = 3, respectively; that is, we have information to set up the prior
distribution in order to release the impact of heterogeneity condition. Scenario S3 indicates
that the prior distributions are close to non-informative prior distributions due to two prior
distributions of λ and γ have a big variance. Hence, the obtained BEs that are based on
Scenario S3 are closed to the MLEs of the CDS parameters. Because the parameters have
different scales, the relative bias (rBias) and relative square root of MSE (rsqMSE), which
are defined as follows, are considered as the quality measures to evaluate the performance
of the BEs that are obtained via using the proposed hGSMH-MCMC method:

rBias
(
ϑ̂B
)
=

Bias
(
ϑ̂B
)

ϑ
, ϑ = λ, γ, θ (25)

and

rsqMSE
(
ϑ̂B
)
=

√
MSE

(
ϑ̂B
)

ϑ
, ϑ = λ, γ, θ. (26)

The proposals of normal distributions, N
(

λ(i−1), 1
)

and N
(

γ(i−1), 1
)

are used to

generate new values of λ(i) and γ(i). Let λ∗ ∼ N
(

λ(i−1), 1
)

. If λ∗ < 0, then λ(i) = λ(i−1)

and λ(i) = λ∗ otherwise. Likewise, let γ∗ ∼ N
(

γ(i−1), 1
)

. If γ∗ < 0, then γ(i) = γ(i−1) and

γ(i) = γ∗ otherwise. The estimation of power-trend hazard rate parameter, θ, is really a
problem in CDS reliability inference. Because we use the power-trend hazard rate model
that was proposed by Balakrishnan, Jiang, Tsai, Lio, and Chen (2015) in this study, the true
θ should be closed to 1. This property makes that the domain of θ can be easily determined.
In this study, we generate the new θ to update θ(i) from θ∗ ∼ N

(
θ(i−1), 0.0001

)
. If θ∗ > 1.01,

θ(i) = θ(i−1) and update θ(i) by θ∗ otherwise. The assumption of the true θ is close to 1 is
reasonable when the power-trend hazard rate model is used. N =10,000 Markov chains are
generated in the proposed hGSMH-MCMC method and the first N1 = 1000 Markov chains
are removed for burn-in. Moreover, 1000 BEs are used in order to obtain the values of the
rBias and rsqMSE. That is, the proposed hGSMH-MCMC method with N =10,000 and
N1 = 1000 are repeated 1000 times to obtain the values of the rBias and rsqMSE for each BE.
In order to catch the heterogeneity condition assumption, we use 1000 generated values of
λ and γ from the Gamma distributions with rate parameter 1 and shape parameter λ and
γ, respectively, as the true parameters of λ and γ in order to evaluate the values of rBias
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and rsqMSE of λ̂B and γ̂B. All of the simulation results are reported in Tables 2–7, in which
Si-S and Si-A means the BE is obtained based on the square or absolute loss functions for
Scenario Si, respectively, for i = 1, 2, 3.

Table 2. The values of rBias and rsqMSE based on θ̂B, λ̂B and γ̂B for n = 30.

θ̂B λ̂B γ̂B

c Scenario rBias reqMSE rBias reqMSE rBias reqMSE

0.3 S1-S −0.0015 0.002 −0.5576 0.5576 −0.1458 0.1462
S1-A −0.0014 0.0023 −0.6292 0.6293 −0.2416 0.2418

0.5 S1-S −0.0015 0.002 −0.5946 0.5947 −0.315 0.3152
S1-A −0.0015 0.0023 −0.6587 0.6587 −0.3843 0.3845

0.6 S1-S −0.0014 0.0021 −0.5951 0.5951 −0.3147 0.3149
S1-A −0.0014 0.0023 −0.6588 0.6588 −0.3801 0.3802

0.7 S1-S −0.0016 0.0021 −0.5939 0.5939 −0.3188 0.319
S1-A −0.0016 0.0023 −0.6578 0.6578 −0.3806 0.3807

0.3 S2-S −0.0014 0.002 −0.522 0.5221 −0.1781 0.179
S2-A −0.0015 0.0023 −0.6135 0.6136 −0.3164 0.3168

0.5 S2-S −0.0013 0.0019 −0.4887 0.4888 0.0086 0.0254
S2-A −0.0013 0.0021 −0.5853 0.5853 −0.1289 0.1308

0.6 S2-S −0.0013 0.0019 −0.4873 0.4874 −0.1318 0.1335
S2-A −0.0013 0.0022 −0.5832 0.5833 −0.2426 0.2434

0.7 S2-S −0.0015 0.002 −0.4612 0.4613 −0.3871 0.3873
S2-A −0.0015 0.0023 −0.5585 0.5586 −0.4642 0.4644

0.3 S3-S −0.0013 0.0019 −0.7275 0.7278 1.1415 −0.7825
S3-A −0.0013 0.0021 −0.7948 0.7951 0.8871 −0.793

0.5 S3-S −0.0013 0.0019 −0.692 0.6922 0.5618 −0.735
S3-A −0.0012 0.0021 −0.759 0.7592 0.4276 −0.7579

0.6 S3-S −0.0014 0.002 −0.7453 0.7455 0.9045 −0.7826
S3-A −0.0014 0.0022 −0.8027 0.8029 0.7536 −0.8025

0.7 S3-S −0.0013 0.0019 −0.5338 0.534 −0.183 −0.5654
S3-A −0.0013 0.0021 −0.6083 0.6085 −0.2528 −0.6052

Tables 2–4 report the values of rBias and rsqMSE that are based on θ̂B, λ̂B, and γ̂B for
n = 30, 50 and 100, respectively. From Tables 2–4, we first find the following results:

1. When compared with the BEs in S1 and S2, the BEs in S3 are less reliable. Because
the BEs in S3 are closed to the MLEs of θ, λ, and γ and the maximum likelihood
estimation ignores the heterogeneity condition. Hence, most of the values of rBias
and rsqMSE of the BEs shown in Scenario S3 of Table 2 to Table 4 are larger than that
in Scenarios S1 and S2. We can claim that the maximum likelihood estimation cannot
work well in obtaining reliable estimates of the CDS parameters if the heterogeneity
condition is true.

2. The BE that is based on the square loss function is more competitive than the BE based
on the absolute loss function when the heterogeneity condition is true. Most of the
values of rBias and rsqMSE of the BE based on the squared loss function are smaller
than those based on the absolute loss function.

3. A sample size of 50 or larger with at least 15 failure times can be used in order to
obtain reliable BEs of the CDS parameters via using the proposed hGSMH-MCMC
method.
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Table 3. The values of rBias and rsqMSE based on θ̂B, λ̂B and γ̂B for n = 50.

θ̂B λ̂B γ̂B

c Scenario rBias reqMSE rBias reqMSE rBias reqMSE

0.3 S1-S −0.0015 0.0021 −0.4137 0.4138 −0.1441 0.1446
S1-A −0.0015 0.0023 −0.5053 0.5054 −0.2595 0.2597

0.5 S1-S −0.0015 0.0021 −0.4225 0.4226 −0.1542 0.1549
S1-A −0.0015 0.0023 −0.5112 0.5113 −0.2566 0.2569

0.6 S1-S −0.0014 0.002 −0.4178 0.418 −0.1352 0.1363
S1-A −0.0015 0.0023 −0.507 0.507 −0.2344 0.235

0.7 S1-S −0.0016 0.0021 −0.4113 0.4115 −0.1614 0.1625
S1-A −0.0016 0.0023 −0.5014 0.5015 −0.2537 0.2543

0.3 S2-S −0.0017 0.0022 −0.2858 0.286 −0.3483 0.3485
S2-A −0.0017 0.0024 −0.399 0.3991 −0.4612 0.4613

0.5 S2-S −0.0015 0.0021 −0.23 0.2304 −0.2198 0.2206
S2-A −0.0015 0.0023 −0.3485 0.3487 −0.3309 0.3313

0.6 S2-S −0.0016 0.0021 −0.2167 0.2171 −0.3074 0.308
S2-A −0.0016 0.0024 −0.3362 0.3365 −0.3993 0.3996

0.7 S2-S −0.0016 0.0021 −0.2071 0.2077 −0.4399 0.4402
S2-A −0.0017 0.0024 −0.3271 0.3274 −0.5106 0.5108

0.3 S3-S −0.0013 0.0019 −0.6821 0.6825 1.7899 1.8012
S3-A −0.0012 0.0021 −0.7608 0.7612 1.5112 1.5229

0.5 S3-S −0.0014 0.002 −0.4415 0.4417 −0.3749 0.3765
S3-A −0.0013 0.0022 −0.5277 0.5278 −0.4778 0.4791

0.6 S3-S −0.0013 0.0019 −0.4455 0.4456 −0.3458 0.3476
S3-A −0.0014 0.0022 −0.5354 0.5356 −0.4215 0.4229

0.7 S3-S −0.0014 0.002 −0.4436 0.4438 −0.3659 0.3675
S3-A −0.0014 0.0022 −0.5356 0.5357 −0.4265 0.4278

The BE of the baseline survival function is also evaluated via using the proposed
hGSMH-MCMC method in order to obtain more information for evaluating the quality of
the proposed hGSMH-MCMC method on the evaluation for the baseline survival function.
Moreover, we use the Markov chains of γ̂B and θ̂B and Equation (9) in order to obtain the
estimate of λ, as denoted by λ̂. Tables 5–7 report all of the simulation results. In the scan of
Tables 5–7, we also find the following results:

1. The BEs of the survival function in Scenario S3 are less reliable when compared with
that in Scenario S1 and S2. Moreover, the heterogeneity condition significantly affects
the quality of the estimation method and makes the BE of the scale parameter less
stable than the BE of the shape parameter. Because the baseline survival function is a
function of the scale and shape parameters, the heterogeneity condition significantly
affects the quality of the BE of the baseline survival function and makes the values of
the rBias and rsqMSE of the BE of the baseline survival function significantly larger
than the BEs of the scale or shape parameters.

2. It is very difficult to use the gradient method to maximize the log-likelihood function
in order to obtain the MLEs of the CDS parameters even under the homogeneity
condition because of the divergence problem in numerical computation. We can find
that most of the values of the rBias and rsqMSE of λ̂ are larger than that of λ̂B in
Tables 2–4. This is additional evidence to indicate that the proposed hGSMH-MCMC
method outperforms the maximum likelihood estimation to obtain reliable estimates
of the CDS parameters.

In summary of the simulation results, we recommend using the proposed hGSMH-
MCMC method to replace the maximum likelihood estimation in order to obtain reliable
estimates of the CDS parameters and implement reliability inference for the CDS.
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Table 4. The values of rBias and rsqMSE based on θ̂B, λ̂B and γ̂B for n = 100.

θ̂B λ̂B γ̂B

c Scenario rBias reqMSE rBias reqMSE rBias reqMSE

0.3 S1-S −0.0012 0.0019 −0.4828 0.4829 0.1261 0.1281
S1-A −0.0012 0.0021 −0.561 0.5611 0.0057 0.0217

0.5 S1-S −0.0016 0.0021 −0.4743 0.4744 −0.0907 0.0958
S1-A −0.0016 0.0023 −0.553 0.5531 −0.1755 0.1779

0.6 S1-S −0.0018 0.0023 −0.4568 0.4569 −0.1896 0.1928
S1-A −0.0019 0.0025 −0.5377 0.5378 −0.2625 0.2646

0.7 S1-S −0.002 0.0024 −0.4485 0.4486 −0.2186 0.2222
S1-A −0.002 0.0026 −0.5308 0.5309 −0.2855 0.288

0.3 S2-S −0.0016 0.0021 −0.3976 0.3978 −0.178 0.1795
S2-A −0.0017 0.0024 −0.4886 0.4887 −0.3131 0.3137

0.5 S2-S −0.0012 0.0019 −0.4102 0.4104 0.0612 0.0768
S2-A −0.0012 0.002 −0.501 0.5011 −0.0672 0.0798

0.6 S2-S −0.0015 0.0021 −0.372 0.3722 −0.1629 0.17
S2-A −0.0016 0.0023 −0.4672 0.4673 −0.262 0.2658

0.7 S2-S −0.0016 0.0021 −0.3534 0.3536 −0.2423 0.2476
S2-A −0.0016 0.0023 −0.4509 0.451 −0.3283 0.3318

0.3 S3-S −0.0014 0.002 −0.5185 0.5186 −0.2698 0.2748
S3-A −0.0014 0.0022 −0.6015 0.6016 −0.4103 0.4135

0.5 S3-S −0.0013 0.0019 −0.5358 0.5359 −0.0635 0.0926
S3-A −0.0013 0.0021 −0.624 0.6241 −0.139 0.1532

0.6 S3-S −0.0014 0.002 −0.4956 0.4958 −0.1368 0.1563
S3-A −0.0014 0.0022 −0.5893 0.5894 −0.215 0.2261

0.7 S3-S −0.0014 0.002 −0.506 0.5061 −0.102 0.1241
S3-A −0.0014 0.0022 −0.5963 0.5964 −0.1831 0.1945

Table 5. The rBias and rsqMSE of the baseline survival function at x0 = S−1
0 (0.8) and λ̂ for n = 30.

Ŝ0B(x0) λ̂

c Scenario rBias reqMSE rBias reqMSE

0.3 S1-S 1.2092 1.2093 −0.6315 0.6315
S1-A 2.0292 2.0292 −0.6731 0.6731

0.5 S1-S 1.4302 1.4303 −0.6454 0.6455
S1-A 2.2934 2.2935 −0.6859 0.6859

0.6 S1-S 1.4313 1.4313 −0.6401 0.6401
S1-A 2.2899 2.29 −0.682 0.682

0.7 S1-S 1.4308 1.4309 −0.6346 0.6346
S1-A 2.2864 2.2865 −0.6777 0.6778

0.3 S2-S 1.0686 1.0687 −0.5759 0.576
S2-A 2.0461 2.0462 −0.6299 0.63

0.5 S2-S 0.8502 0.8503 −0.5316 0.5317
S2-A 1.7235 1.7236 −0.5929 0.5929

0.6 S2-S 0.9549 0.955 −0.5254 0.5254
S2-A 1.8479 1.8481 −0.5896 0.5897

0.7 S2-S 1.0812 1.0814 −0.4927 0.4927
S2-A 1.9989 1.9991 −0.5629 0.5629

0.3 S3-S 0.6719 0.6808 −0.7825 0.7828
S3-A 1.5823 1.5843 −0.793 0.7932

0.5 S3-S 1.1087 1.109 −0.735 0.7352
S3-A 1.9256 1.9258 −0.7579 0.758

0.6 S3-S 1.0223 1.0228 −0.7826 0.7827
S3-A 1.8294 1.8299 −0.8025 0.8026

0.7 S3-S 1.2388 1.2389 −0.5654 0.5656
S3-A 1.9578 1.9581 −0.6052 0.6053
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Table 6. The rBias and rsqMSE of the baseline survival function at x0 = S−1
0 (0.8) and λ̂ for n = 50.

Ŝ0B(x0) λ̂

c Scenario rBias reqMSE rBias reqMSE

0.3 S1-S 0.8294 0.8295 −0.4649 0.4649
S1-A 1.5838 1.584 −0.5305 0.5306

0.5 S1-S 0.8565 0.8568 −0.4583 0.4584
S1-A 1.6006 1.6009 −0.525 0.5251

0.6 S1-S 0.831 0.8314 −0.4498 0.4499
S1-A 1.5591 1.5595 −0.5184 0.5185

0.7 S1-S 0.8382 0.8387 −0.44 0.4401
S1-A 1.5632 1.5637 −0.511 0.5111

0.3 S2-S 0.745 0.7452 −0.2861 0.2863
S2-A 1.4894 1.4897 −0.3706 0.3707

0.5 S2-S 0.5394 0.5401 −0.2312 0.2316
S2-A 1.1867 1.1873 −0.3215 0.3219

0.6 S2-S 0.5904 0.5911 −0.2183 0.2188
S2-A 1.2386 1.2393 −0.3123 0.3127

0.7 S2-S 0.683 0.6838 −0.2082 0.2088
S2-A 1.3498 1.3506 −0.3054 0.3059

0.3 S3-S −0.2335 0.2593 −0.7214 0.7219
S3-A 0.3386 0.3659 −0.7534 0.7537

0.5 S3-S 1.0898 1.0901 −0.4482 0.4483
S3-A 1.9083 1.9086 −0.503 0.5032

0.6 S3-S 1.0764 1.0766 −0.4549 0.4551
S3-A 1.8736 1.8738 −0.5185 0.5187

0.7 S3-S 1.0876 1.0879 −0.4531 0.4532
S3-A 1.8796 1.8799 −0.5222 0.5224

Table 7. The rBias and rsqMSE of the baseline survival function at x0 = S−1
0 (0.8) and λ̂ for n = 100.

Ŝ0B(x0) λ̂

c Scenario rBias reqMSE rBias reqMSE

0.3 S1-S 0.7732 0.7738 −0.4892 0.4893
S1-A 1.4596 1.4602 −0.5529 0.553

0.5 S1-S 0.9392 0.9402 −0.4803 0.4804
S1-A 1.6542 1.6552 −0.5467 0.5469

0.6 S1-S 0.9793 0.9804 −0.4616 0.4617
S1-A 1.701 1.7022 −0.5305 0.5306

0.7 S1-S 0.9839 0.9851 −0.4528 0.4529
S1-A 1.7032 1.7045 −0.5238 0.524

0.3 S2-S 0.8121 0.8128 −0.4206 0.4207
S2-A 1.5911 1.5918 −0.4902 0.4903

0.5 S2-S 0.6428 0.6447 −0.4299 0.4301
S2-A 1.3277 1.3296 −0.5037 0.5038

0.6 S2-S 0.7473 0.7492 −0.3886 0.3887
S2-A 1.458 1.4599 −0.4679 0.4681

0.7 S2-S 0.7735 0.7754 −0.3683 0.3684
S2-A 1.4865 1.4884 −0.4517 0.4519

0.3 S3-S 1.1428 1.1432 −0.5305 0.5306
S3-A 2.0974 2.0979 −0.5883 0.5884

0.5 S3-S 1.0317 1.0325 −0.5491 0.5492
S3-A 1.8936 1.8944 −0.6207 0.6208

0.6 S3-S 0.9756 0.9764 −0.5027 0.5028
S3-A 1.8395 1.8404 −0.5831 0.5832

0.7 S3-S 0.9735 0.9743 −0.5123 0.5125
S3-A 1.8306 1.8315 −0.591 0.5911
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3.2. An Example

In the real world, there are many CDS examples. For example, a light emitting diode
(LED) panel is composed of an array of LEDs. Each LED failure will enhance the risk of the
LED panel failure due to the surviving LEDs need to share the current. Another example
regards the small electronic service system. A data set of the first failure times in month
of small electric carts, which are used for internal transportation and delivery in a large
manufacturing facility, is used in order to illustrate the proposed hGSMH-MCMC method.
Zimmer, Keats, and Wang [44] have studied this example and used Burr XII distribution to
model the first failure times of small electric carts. Because the shortest first failure time of
small electric cart is smaller than 1, we cut the shortest first failure times and take logarithm
transformation for the first failure times in the small electric carts data set. Let X denote
the first failure times of small electric carts and ti = log(xi), i = 1, 2, . . . , 19. Table 8 reports
the 19 logarithm-transformed first failure times of small electric carts.

The MLEs of λ and γ in the Gompertz distribution can be obtained by λ = 0.0594
and γ = 1.0674, respectively, via using the R package maxLik. Denote the first failure time
of small electric carts in Table 8 by tj and let uj =

j−0.5
n , j = 1, 2, . . . , 19. Let Gomp.tj =

F−1
0
(
uj|λ̂, γ̂

)
denote the quantile of uj by replacing λ = λ̂ and γ = γ̂. Figure 4 displays

the quantile-quantile (QQ) plot of the logarithm-transformed first failure times of small
electric carts in Table 8 with the quantiles of Gomp.tj, j = 1, 2, . . . , 19 and indicates that the
Gompertz distribution with λ = 0.0594 and γ = 1.0674 can characterize this data set well.
The Kolmogorov–Smirnov (K-S) statistic is 0.0526 with a p-value close to 1. Hence, the K-S
test supports the Gompertz distribution with λ = 0.0594 and γ = 1.0674 can characterize
this data set well.

Table 8. The first failure time in years of small electric carts.

0.4055 0.8329 1.1632 1.361 1.6094 1.8245 2.0149 2.1163 2.3418 2.4069
2.5337 2.7081 2.7912 2.9601 3.1179 3.2108 3.45 3.6402 3.9703

Figure 4. The quantile-quantile (QQ) plot of the logarithm-transformed first failure time of small
electric carts with the quantiles of Gomp.tj, j = 1, 2, · · · , 19.

Assume that n = 30 small electric carts are used for internal transportation and
delivery in a large manufacturing facility. Each small electric cart failure can equally induce
higher loading on surviving small electric carts and, hence, enhance the hazard rate of
each surviving small electric carts. The service system is shut down if half or r = 15 small
electric carts in the service system are malfunctioned. While using θ = 1.002 a SOS sample
with heterogeneity condition is generated and reported in Table 9, in which λ is generated
from the Gamma distribution with shape parameter 0.0594 and rate parameter 1; and, γ is
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generated from the Gamma distribution with a shape parameter 1.0674 and rate parameter
1. The proposed hGSMH-MCMC method is used in order to obtain the BEs of θ, λ and
γ. We would like to establish Markov chains for each parameter with burn-in to remove
the leading Markov chains. During the numerical computation procedure, we find that
the autocorrelation among the generated Markov chins disappear slowly. We generated
500,000 Markov chains and removed the first 1000 Markov chains for burn-in in order to
reduce the autocorrelation among the Markov chains in this example. Subsequently, take
1 for every 100 Markov chains to reduce the autocorrelation among the Markov chains.
Figures 5–7 show the Markov chains of θ, λ and γ, respectively. The acceptance rates are 1,
0.8857 and 1 for θ, λ and γ respectively. All the acceptance rates are high. Based on the
square loss function, the obtained BEs are θ̂B = 1.0003 , λ̂B = 0.0898 and γ̂B = 0.9520,
respectively. Because the heterogeneity condition is considered in the example, the sample
means of 100 generated data sets of λ and γ are 0.0680 and 1.0845, respectively. The Markov
chains of the baseline survival function for x0 = 0.8 can be obtained via using Equation (24)
and are reported in Figure 8. The BE of ŜB(x0 = 0.8) = 0.9056 and the 95% credible interval
of S0(x0 = 0.8) is (0.8148, 0.9666).

Figure 5. The Markov chains of θ.

Figure 6. The Markov chains of λ.



Mathematics 2021, 9, 145 18 of 21

Figure 7. The Markov chains of γ.

Figure 8. The Markov chains of S0(0.8).

Table 9. The first failure time in years of small electric carts.

0.546 0.6627 1.3981 1.4657 1.8942 1.926 1.9504 2.0197
2.1757 2.2543 2.2691 2.4151 2.4497 2.4693 2.6036

4. Conclusions

In this study, we proposed a hGSMH-MCMC method in order to obtain the BEs of
the CDS parameters when the lifetimes of components follow a Gompertz distribution
with a heterogeneity condition. Moreover, the hazard rate of the CDS is characterized by
the power-trend hazard rate function. A Bayesian estimation method using the MCMC
approach is proposed in order to overcome the difficulty during obtaining reliable estimates
of the parameters in the CDS model.

A hybrid Gibbs sampling and Metropolis-Hasting algorithm are used to implement the
MCMC approach. The performance of the proposed hGSMH-MCMC method is evaluated
via using an intensive simulation study. The simulation results show that the proposed
estimation method is reliable in providing reliability evaluation information for the CDS
when the quality of the components has a heterogeneity condition. The simulation results
show that the proposed method can provide reliable BEs for the CDS parameters.

The quality of the BE for the power-trend hazard rate parameter that is based on using
the proposed hGSMH-MCMC method can be further improved to reduce the autocorrela-
tion. When compared with the impact of the autocorrelation on the Markov chains of the
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scale and shape parameters of the Gompartz distribution, the impact of autocorrelation on
the Markov chains of the power-trend hazard rate parameter is more difficult to reduce,
even through a slim operation. How to obtain a reliable estimate of the power-trend hazard
rate parameter is still an open question in the parameter estimation study of the CDS. The
posterior predictive checking method that was proposed by Gelman, Carlin, Stern, Dunson,
Vehtari and Rubin [45] is a good method for implementing predictive checks. However,
the observations in a SOS sample are dependent and non-identically distributed. It cannot
use the predictive checking method that was proposed by Gelman, Carlin, Stern, Dunson,
Vehtari, and Rubin [45] to deal with the SOS samples. How to develop an improved
predictive checking method to deal with SOS samples is also an open question. These two
topics will be studied in the near future.

Author Contributions: Data curation, H.X.; Funding acquisition, T.-R.T.; Investigation, T.-R.T.;
Project administration, T.-R.T.; Software, H.X. and C.-H.K.; Validation, T.-R.T. and C.-H.K.; Writing–
original draft, T.-R.T. and H.X.; Writing–review and editing, C.-H.K. All authors contributed equally
in writing this article. All authors have read and agreed to the published version of the manuscript.

Funding: This study is supported by the grant of Ministry of Science and Technology, Taiwan MOST
108-2221-E-032-018-MY2.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BE Bayes estimator/estimate
CDS composite dynamic system
CI confidence interval
EM expectation-maximization
hGSMH hybrid Gibbs sampling and Metropolis-Hasting
MCMC Markov chain Monte Carlo
MLE maximum likelihood estimator/estimate
MSE mean square error
rBias relative bias
rsqMSE relative square root of MSE
SOS sequential order statistic

Appendix A. The Proof of the Posterior Distribution

L(Θ|y)π(Θ) = an,r

(
θr(r+1)/2

)
× λr × eγ ∑r

j=1 yj ×ω1,y(Θ)×ω2,y(Θ)

× φ1(θ)× φ2(λ|η1, δ1)× φ3(γ|η2, δ2)

= an,r

(
θr(r+1)/2

)
×ω1,y(Θ)ω2,y(Θ)× 1

b2 − b1

×
ηδ1

1
Γ(δ1)

λ(r+δ1)−1e−η1γ ×
ηδ2

2
Γ(δ2)

λδ2−1e−η2,yγ

=
an,r × η−r

1
b2 − b1

× Γ(r + δ1)

Γ(δ1)
×

ηδ2
2

ηδ2
2,y

×
ηr+δ1

1
Γ(r + δ1)

λr+δ1−1e−η1λ

×
ηδ2

2,y

Γ(δ2)
× λδ2−1e−η2,yγ

(
θr(r+1)/2

)
×ω1,y(Θ)×ω2,y(Θ)

= ψn,r(η1, δ1, η2, δ2)× g1(λ|η1, δ1)× g2,y(γ|η2, δ2)

×
(

θr(r+1)/2
)
×ω1,y(Θ)×ω2,y(Θ)

∝ g1(λ|η1, δ1)× g2,y(γ|η2, δ2)
(

θr(r+1)/2
)

× ω1,y(Θ)×ω2,y(Θ),
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where

ψn,r(η1, δ1, η2, δ2) =
an,r × η−r

1
b2 − b1

× Γ(r + δ1)

Γ(δ1)
×

ηδ2
2

ηδ2
2,y

.

Then,

π(Θ|y) =
L(Θ)π(Θ)∫ ∞

0

∫ ∞
0

∫ b2
b1

L(Θ)π(Θ)dθdγdλ

=
1
c
× g1(λ|η1, δ1)× g2,y(γ|η2, δ2)

(
θr(r+1)/2

)
×ω1,y(Θ)×ω2,y(Θ)

where

c =
∫ ∞

0

∫ ∞

0

∫ b2

b1

g1(λ|η1, δ1)× g2,y(γ|η2, δ2)
(

θr(r+1)/2
)

×ω1,y(Θ)×ω2,y(Θ)dθdγdλ.
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